

DPP - 2

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/59

https://youtu.be/fQD98Ix8RBw

Written Solution on Website:-

Q 1. The internal energy of an ideal gas depends upon
(a) Specific volume
(b) Pressure
(c) Temperature
(d) Density

Q 2. The internal energy of gases $\mathrm{He}, \mathrm{O}_{2}$ and NH_{3} are plotted against the absolute temperature. The respective graphs 1,2 and 3 are of

(a) $\mathrm{He}, \mathrm{O}_{2}$ and NH_{3}
(b) $\mathrm{NH}_{3}, \mathrm{He}$, and O_{2}
(c) $\mathrm{NH}_{3}, \mathrm{O}_{2}$ and He
(d) $\mathrm{O}_{2}, \mathrm{He}$, and NH_{3}

Q 3. In changing the state of thermodynamics from A to B state, the heat required is Q and the work done by the system is W . The change in its internal energy is
(a) $\mathrm{Q}+\mathrm{W}$
(b) $\mathrm{Q}-W$
(c) Q
(d) $\frac{Q-W}{2}$

Q 4. For a gaseous system find change in internal energy if the heat supplied to the system is 50 J and work done by the system is 16 J
(a) 66 J
(b) 50 J
(c) 34 J
(d) 16 J

Q 5. For a gaseous system, change in internal energy (ΔU) and work done on the system are respectively 17 J and 41 J . find heat supplied / evolved from the system.
(a) 24 J supplied to system
(b) 24 J evolved from system
(c) 57 J supplied to system
(d) 57 J evolved from system

Q 6. The first law of thermodynamics is concerned with the conservation of
(a) Momentum
(b) Energy

(c) Mass
(d) Temperature

Q 7. The ratio of translational and rotational kinetic energies at 100 K temperature is 3:2. Then the internal energy of one mole gas at that temperature is ($\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$)(Neglecting all vibrational modes)
(a) 1175 J
(b) 1037.5 J
(c) 2075 J
(d) 4150 J

Q 8. Find total internal energy of 3 moles of hydrogen gas at temperature `\(T\)` (Neglecting all vibrational modes)
(a) 7.5 RT
(b) 15 RT
(c) 75 RT
(d) 5.5 RT

Q 9. A gas mixture consists of 2 moles of oxygen and 4 moles of Argonat temperature T.
Neglecting all vibrational modes, the total internal energy of the system is:
(Neglecting all vibrational modes)
(a) 4 RT
(b) 9 RT
(c) 11 RT
(d) $15 R T$
Q 10. Plot a graph between internal energy U and Temperature (T) of an ideal gas
(a)

(c)
(b)

Q 11. Internal energy of n_{1} moles of H_{2} at temperature T is equal to the internal energy of n_{2} moles of He at temperature 2 T . Then the ratio $\frac{n_{1}}{n_{2}}$ is:
(a) $3 / 5$
(b) $2 / 3$
(c) $6 / 5$
(d) $3 / 7$

Q 12. If heat is supplied to an ideal gas in an isothermal process
(a) the internal energy of the gas will increase
(b) the gas will do positive work
(c) the gas will do negative work
(d) the given process is not possible

Q 13. Find the change in internal energy in joule when 20 gm of a gas is heated from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ at constant volume ($C_{V}=0.18 \mathrm{Kcal} / \mathrm{kg}-\mathrm{K}$)
(a) 72.8 J
(b) 151.2 J
(c) 302 J
(d) 450 J

Q. 1	c	Q. 2	a	Q. 3	b	Q. 4	c	Q. 5	b
Q. 6	b	Q. 7	c	Q. 8	a	Q. 9	c	Q.10	a
Q. 11	c	Q.12	b	Q.13	b				

